Exercise 1

Use the Laplace transform method to solve the Volterra integral equations:

$$
u(x)=x+\int_{0}^{x}(x-t) u(t) d t
$$

Solution

The Laplace transform of a function $f(x)$ is defined as

$$
\mathcal{L}\{f(x)\}=F(s)=\int_{0}^{\infty} e^{-s x} f(x) d x .
$$

According to the convolution theorem, the product of two Laplace transforms can be expressed as a transformed convolution integral.

$$
F(s) G(s)=\mathcal{L}\left\{\int_{0}^{x} f(x-t) g(t) d t\right\}
$$

Take the Laplace transform of both sides of the integral equation.

$$
\begin{aligned}
\mathcal{L}\{u(x)\} & =\mathcal{L}\left\{x+\int_{0}^{x}(x-t) u(t) d t\right\} \\
U(s) & =\mathcal{L}\{x\}+\mathcal{L}\left\{\int_{0}^{x}(x-t) u(t) d t\right\} \\
& =\mathcal{L}\{x\}+\mathcal{L}\{x\} U(s) \\
& =\frac{1}{s^{2}}+\frac{1}{s^{2}} U(s)
\end{aligned}
$$

Solve for $U(s)$.

$$
\begin{aligned}
\left(1-\frac{1}{s^{2}}\right) U(s) & =\frac{1}{s^{2}} \\
U(s) & =\frac{\frac{1}{s^{2}}}{1-\frac{1}{s^{2}}} \\
& =\frac{1}{s^{2}-1}
\end{aligned}
$$

Take the inverse Laplace transform of $U(s)$ to get the desired solution.

$$
\begin{aligned}
u(x) & =\mathcal{L}^{-1}\{U(s)\} \\
& =\mathcal{L}^{-1}\left\{\frac{1}{s^{2}-1}\right\} \\
& =\sinh x
\end{aligned}
$$

